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Abstract—Data quality plays a crucial role in the performance
of machine learning model training. Data preprocessing can
contribute to enhancing the data quality, leading to overall
improvement of the model performance. Thus, selecting the ap-
propriate preprocessing algorithms is a critical step in designing
any machine learning model, which remains challenging. This
paper provides an empirical study of scaling algorithms and
their reflection on model performance, primarily focusing on the
electrocardiography signal classification tasks that are utilized in
different disease detection.

Index Terms—ECG, classification, scaling, deep learning, ma-
chine learning

I. INTRODUCTION

Data quality plays a significant role in machine learning
algorithm performance [1]. With the increase in data size, data
noises can cause multiple problems in training machines and
deep learning models. Thus, data preprocessing and scaling
are crucial to improve the machine learning model.

Different data sources have different complexity and noise
assigned for specific data collection methodologies [2]. In
addition, the range of the collected data may vary from
one source to another even if the data represents the same
concept [3], [4].

In this paper, we empirically study the effect of using
different scalers as a step of data preprocessing on electrocar-
diography (EKG or ECG) signals classification tasks as one
of the applications that are used to detect different diseases.

II. ELECTROCARDIOGRAM (ECG)
The electrocardiogram (ECG) or (EKG) is the recording

of the electrical signal produced by the heart due to its
activity [5]. The ECG signal is recorded by placing electrodes
such as Ag/AgCl electrodes [6] over the skin to detect the tiny
electrical changes on the skin. The ECG signal depolarizes and
repolarizes during each heartbeat [5]. The ECG is considered
one of the simplest and safest non-invasive methods to detect
cardiac problems [7]. Thus, several machine learning models
address detecting cardiac problems using machine learning and
deep learning such in [8]–[10].

A. Types of Scalers
There are multiple types of data scalers. In this paper, we

mainly focuse on eight different scalers as most commonly
used scalers in signal processing tasks. These scalers are [?]:

• Standard Scaler (Z-Score): It is the most common
normalization method, however, a disadvantage of this
method is that all the normalized features have a unity
variance [11]. Also, it known as Z-Score Normalization,
Mean Normalization or just Standardizing. The Standard
scaler is performed as follows: for a given speech feature
X, the mean (average) of the data µ and the standard de-
viation σ are computed [12]. The complete standardized
feature is calculated with the following equation:

Standard scaler(x) =
x− µ

σ
(1)

• Minimum and Maximum Scaler (MMS): This scaler
is also know as ”Feature Scaling” or just ”Normaliza-
tion” [13]. The MMS scales each feature to a given range
and is calculated with the following equation:

MMS(x) =
(x−min(x))(b− a)

max(x)−min(x)
+ a (2)

• Maximum Absolute Scaler (MAS): It scales each feature
by its maximum absolute value.

MAS(x) =
x

max(|x|)
(3)

• Robust Scaler (RS): It removes the median and scales the
data according to the quantile range. The quantile range
is the range between the 1st quartile (25st quantile) and
the 3rd quartile (75th quantile).

RS(x) =
x−Q1(x)

Q3(x)−Q1(x)
(4)

• Power Transformer (PT): it applies a power transform
featurewise to make the data more Gaussian-like. This
implementation uses the Yeo-Johnson transform.

• Quantile Uniform Transformer (QUT): This scaler uses
quantile information to scale features. It applies a non-
linear transformation such that the probability density
function of each feature will be mapped to a uniform
distribution. The QUT scaler operates in two steps. The
first step is to compute the rank of each data point in
the original feature, denoted as R(X). It represents the
percentile rank of each data point. The second step in-
volves transforming the rank values R(X) into a uniform



Algorithm 1: Power Transformer (PT) Scaler with
Yeo-Johnson Transform

Data: Data X, Transformation exponent λ
Result: Transformed data X′

1 for each element x in X do
2 if x ≤ 0 then
3 offset = min(X + 1)
4 X′ = log(X + offset)

5 else
6 X′ = (X + 1)λ − 1

7 return X′

distribution. This is done using the inverse cumulative
distribution function (CDF) of the uniform distribution.

Step One:

R(X) =
1

N

N∑
i=1

I(Xi ≤ X) (5)

where, N is the total number of data points. Xi is the
value of the i-th data point. I(·) is the indicator function
(1 if true, 0 if false).

Step Two:

XQUT = UniformInverseCDF(R(X)) (6)

where UniformInverseCDF(x) is the inverse CDF of the
uniform distribution.

• Quantile Guassian Transformer (QGT): It is quite sim-
ilar to the Quantile Uniform Transformer, however, the
output distribution follows Gaussian distribution rather
than a uniform distribution. The Wiener filter can be
defined as:

Ŝ(f) = H(f) ·X(f) (7)

where: Ŝ(f) is the estimated clean signal in the frequency
domain, H(f) is the frequency response of the Wiener fil-
ter, and X(f) is the observed noisy signal in the frequency
domain.

III. EXPERIMENTAL METHODOLOGY

To investigate the performance of different scalers on the
ECG signal, multiple experiments will be performed using
various ECG data sources that addresses different tasks. As
a pilot investigation, we started with the UCI ECG200 dataset
as one of the most popular univariant timeseries datasets. To
set qn equaivallent comarison between all the scalers, we used
the GRU-FCN model that proposed in [14] as the classifier and
in every empirical investigation, we changed the scaler. Table I
shows the empirical results of our experiments on the effect
of the scalers on model overall performance.

IV. CONCULISION AND FUTURE WORK

Data quality plays a crucial role in the model performance
and results. Thus, in this paper, we aim to empirically investi-
gate the effect of scalers on the electrocardiogram (ECG) data
classification as a pilot empirical evaluation. The future work
includes the investigation of other ECG datasets as well as

TABLE I
A COMPARISON BETWEEN DIFFERENT SCALERS EFFECT ON THE

CLASSIFICATION OF ECG200 DATASET.

scaler Accuracy F1-Score Prec. Recall
No Scaler 0.870 0.861 0.856 0.868
Standard Scaler 0.890 0.878 0.887 0.872
Min-Max Scaler 0.850 0.836 0.838 0.834
Max-Abs Scaler 0.890 0.878 0.887 0.872
Robust Scaler 0.910 0.904 0.898 0.911
Power Transformer Scaler 0.900 0.889 0.902 0.879
QUT Scaler 0.870 0.858 0.860 0.856
QGT Scaler 0.880 0.870 0.870 0.870

both deep learning and machine learning-based classifiers for
ECG classification purposes to identify the best practice for
ECG data scaling for classification purposes that can serve in
multiple ECG-based disease diagnostic models.
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